
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP014209
TITLE: One-vs-One Multiclass Least Squares Support Vector Machines for
Direction of Arrival Estimation

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Applied Computational Electromagnetics Society Journal. Volume
18, Number 2. Special Issue on Neural Network Applications in
Electromagnetics.

To order the complete compilation report, use: ADA417719

The component part is provided here to allow users access to individually authored sections
)f proceedings, annals, symposia, etc. However, the component should be considered within
[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADPO 14206 thru ADP014212

UNCLASSIFIED



98 ACES JOURNAL, VOL. 18, NO. 2, JULY 2003, SI: NEURAL NETWORK APPLICATIONS IN ELECTROMAGNETICS

One-vs-One Multiclass Least Squares Support
Vector Machines for Direction of Arrival

Estimation
Judd A. Rohwer' and Chaouki T. Abdallah2

'Sandia National Laboratories, P.O. Box 5800 MS-0986, Albuquerque, NM, 87185-0986 Email: jarohwe@sandia.gov
2Department of Electrical and Computer Engineering, MSC01 1100

University of New Mexico, Albuquerque, NM, 87131-001 Email: chaouki@eece.unm.edu

Abstract-This paper presents a multiclass, multilabel im- problems. Many approaches have been developed fore alcu-
plementation of Least Squares Support Vector Machines (LS- lating the DOA; three techniques based on signal subspace
SVM) for DOA estimation in a CDMA system. For any decomposition are ESPRIT, MUSIC, and Root-MUSIC [1].
estimation or classification system the algorithm's capabilities
and performance must be evaluated. This paper includes a vast Neural networks have been successfully applied to the
ensemble of data supporting the machine learning based DOA problem of DOA estimation and adaptiveb eamforming in
estimation algorithm. Accurate performance characterization of [4], [5], [6]. New machine learning techniques, such as
the algorithm is required to justify the results and prove that support vector machines( SVM) and boosting [7], perform
multiclass machine learning methods can be successfully applied exceptionally well in multiclass problems and new op-
to wireless communication problems. Thel earning algorithm
presented in this paper includes steps for generating statistics timization techniques are published regularly. These new
on the multiclass evaluation path. The error statistics provide machine learning techniques have the potential to exceed
a confidence level of the classification accuracy. the performance of then eural network algorithms relating

to communication applications.
The machine learning methods presented in this paper

I. INTRODUCTION include subspace based estimation applied to the sample
covariance matrix of the received signal. The one-vs-one

Machine leamingr eseareh has largely been devoted to multiclass LS-SVM algorithm uses both training data and
binagr and multiclass problems relating to data mining, text received data to generate the DOA estimates. The end result
categorization, and pattern recognition. Recently, machine is an efficient approach for estimating the DOAs in CDMA
learning techniques have been applied to various problems cellular architecture [1].
relating to cellular communications, notably spread spectrum This paper is organized as follows. Section II presents
receiver design, channel equalization, and adaptive beam- the system models for an adaptive antenna array CDMA
forming with direction of arrival estimation (DOA). In our systems. A review of binary and multiclass machine learning
research we present a machine learning based approach for methods is presented in Section III, along with background
DOA estimation in a CDMA communication system [1]. information on the LS-SVM algorithm. Section IV includes
The DOA estimates are used in adaptive beamforming for a brief review of classic DOA estimation algorithms and
interference suppression, a critical component in cellular the elements of a machine learning based DOA estimation
systems.I nterference suppression reduces the multiple access algorithm. Section V presents a one-vs-onem ulticlass LS-
interference (MAI) which lowers the required transmit power. SVM algorithm for DOA estimation and simulation results
The interference suppression capability directly influences are presented in Section VI. Section VII includes a compar-
the cellular system capacity, i.e.,t he number of active mobile ison between standard DOA estimation algorithmsa nd our
subscribers per cell. machine learning based algorithm.

Beamforming, tracking, and DOA estimation are current
research topics with various technical approaches. Least
mean square estimation, Kalman filtering, and neural net- II. SYSTEM MODELS

works [2],[3],[4], have been successfully applied to these This section includes an overview of system models for
the received signal and adaptive antenna arrays designs.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a

Lockheed Martin Company, for theU nited States Department of Energy All notation is described below and is consistently used
under Contract DE-AC04-94AL85000. throughout the paper.

1054-4887' 2003 ACES
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A. Received Signal at Antenna Array output using a hyperplane . The data points near the optimal hyper-

The baseband signal, rA (t), from the antenna array is plane are the "support vectors". SVMs are a nonparametric
machine learning algorithm with the capability of controlling

rA (t) = As (t) + n, (t). (1) the capacity through the support vectors.

A = [a(01) a (02) ... a(OL) ] (2)

a(0 1) = [1 e-jit e-j
2

k1 ... e-j(D-l)k, ]T(3) A. Kernel Functions

s ()= s (n) S2 ( ... S T The kernel based SVM maps the input space into a higher
(t) = [Lp(t)q(b. (n)) fo pah ]T (4) dimensional feature, F, space via a nonlinearm appings1 (t) = • tq'b, (t) , for path 1, (5)

r :R]N • F (9)

where rA (t) is the received signal of mobile i, A is a

D x L array steering vector for D antenna elements and X F X (10)

L transmission paths, s (t) is the L x 1 received base- The data does not have the same dimensionality as the feature
bands ignal at the output of the matched filter, a (0t) = space since the mapping process is to a non-unique general-

[ 1 e-kl ... ei(D-l)kI ]T is the D x 1 steering ized surface [9]. The dimension of the feature space is not as
vector, k, = • sin 01, v is the spacing between antenna important as the complexity of the classification functions.C

elements, w. is the carrier frequency, c is the velocity of For example, in the input space, separating the input/output
propagation, 01is the direction of arrival of the 1 signal, pairsm ay require a nonlinear separating function, but in a

Pti (t) is the transmit signal power from mobile i, qý is the higher dimension feature space the input/output pairs may be
attenuation due to shadowing from path 1, bi (t) is the data separated with a linear hyperplane. The nonlinear mapping
stream of mobile i, and n, (t) is the additive noise vector, function r (xi) is related to kernel, k (x, xi) by

To ease the complexity of the notation the terms relative
to the multiple paths are combined as r (x).r (xi) = k (x, xi). (11)

L Four popular kernel functions are the linear kernel, poly-
zi = a (01) q!. (6) nomial kernel, radial basis function (RBF), and multilayer

perceptrons (MLP).
In [8] zi is defined as the spatial signature of the antenna linear, k (x, xi) = x (12)array to the ith mobile. ier x x)=x i(2

polynomial, k (x, xi) = ((x. Xi) +O)d (13)

III. SUPPORT VECTOR MACHINES - BACKGROUND RBF, k (x, xi) exp 1- _ Xi12" 1RB, ~~x)= ex(IxxI)(14)
A major machine learning application, pattern classifi- (72

cation, observes input data and applies classification rules MLP, k (x, xi) = tanh (r, (x -xi) +0) (15)
to generate a binary or multiclass labels. In the binary
*case, a classification function is estimated using input/output The performance of each kernel function varies with the

training pairs,(xi,yi) i = 1... n, with unknown probability characteristics of the input data. Refer to [10] for more

distribution, P(x, y), information on feature spaces and kernel methods.

(x 1,y 1),, (XnYn) E RN X y, (7) B. Binary Classification

Y = {-1 +1}. (8) In binary classification systems the machine learning algo-

The estimated classification function maps the input to a rithm generate the output labels with a hyperplane separation
binary output, f : RN - {-1, +1}. The system is first where yi 6 [-1, 1] represents the classification "label" of the
trained with the given input/output data pairs then the test input vector x . The input sequence and a set of training
data, taken from the same probability distribution P(x, y), is labels are represented as {xi,y2 }i 1 , yi = {-1, +1}. If the
applied to the classification function. For the multiclass case two classes are linearly separable in the input space then the
Y E RG where Y is a finite set of real numbers and G is the hyperplane is defined as wTx+b = 0, w is a weight vector
size of the multiclass label set.I n multiclass classification the perpendicular to the separating hyperplane, b isa biast hat
objective ist o estimate the function which maps the input shifts the hyperplane parallel to itself. If the input space is
data to a finite set of output labels f : RN ___ S (RN) E RG projected into a higher dimensional feature spacet hen the

Support Vector Machines (SVMs) were originally de- hyperplane becomes wTr (x) +b = 0.
signed for the binary classification problem. Much like The SVM algorithm is based on the hyperplane definition
all machine learning algorithmsS VMs find a classification [11],
function that separates data classes, with the largest margin, yi [wTr (xi) +b] > 1, i = 1,...N, . (16)
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Given the training sets in (7) the binary support vector D. Least Squares SVM
machine classifieri s defined as Suykens, et.al., [13] introduced the LS-SVM which is

[N 1 based on the SVM classifier, refer to equation (17). The LS-

y (x) = sign aiyik (x, xi) + b . (17) SVM classifier is generated from the optimization problem:

1n

The non-zero ovs are "support values" and the corresponding min zS (w,W) - 12 + _ ' (18)
data points, xi, are the "support vectors". Quadratic pro- w,,=, 2 2
gramming is one method ofs olving for the ols and b in the -y and Oi are the regularization and error variables, respec-
standard SVM algorithm. tively. The minimization in (18)includes the constraints
C. Multiclass Classification Yi 1w Tr (xi) +b] >! 1 - oi, i = 1,... -, n, (19)

For the multiclass problem the machine learning algorithm The LS-SVM includes one universal parameter, y, that

produces estimates with multiple hyperplane separations, regulates the complexity of the machine learning model.T his

The set. of input vectors and training labels is defined as parameter is applied to the data in the feature space, the

{x , YC=ýj•.= , n R•, Y1  E {1,..., G}, n is the index output of the kernel function. A small value of y minimizes
of the training pattern and C is the number of classes. There the model complexity, while a large value of y promotes
exist many SVM approaches to multiclass classification prob exact fitting to the training points. The error variable Oi
lem. Two primary multiclass techniques are one-vs-one and allows misclassifications foro verlapping distributions [14].

one-vs-rest. One-vs-onea pplies SVMs to selected pairs of The Lagrangian ofe quation (18) is defined as
classes. For C distinct classes there are C(C-1) hyperplanes ZLS (w,b,O, a) = £LS (w,b,o) - (20)
that separate the classes. The one-vs-rest SVM technique nx

generates C hyperplanes that separate each distinct class Zai {y. [wTr (xi)+b]- 1+ €k}
from the ensemble of the rest. In this paper we only consider
the one-vs-one multiclass SVM. where ai are Lagrangian multipliers that can either be

Platt, et.al., [12] introduced the decision directed acyclic positive or negative. The conditions of optimality are
graph (DDAG) and a Vapnik-Chervonenkis (VC) analysis
of the margins. The DDAG technique isb ased on C(C-)2 dZLs __ O W _• yr(x)2)

classifiers fora C class problem, one node for each pair of dw = w a i (xi) (21)
classes. In [12] it is proved that maximizing the margins at
each node of the DDAG will minimize the generalization dZLS 0, Y civi= 0 (22)
error. The performance benefit of the DDAG architecture, db Z0(
is realized when the ith classifier is selected at the ith/jth dZS
node and the jth class is eliminated. Refer to Figure 1 for a do 0, ai = yoi (23)
diagram of a fourc lass DDAG. d0dZLs - 0, Y [WTr(x,)+b] -l+¢, =0 (24)

Input dai

A linear system can be constructed from equations (21) -
vs4 (24) [13],

NotI Not4 0 o o -zTN40 0 0 _yT w 0 (25)
2 vs4 10 0 7I -I (6 0

Not 2 Not 4, ' Z y 1 0

Not I No"-

2vs3z = [r(xl)Ty1,...,r(x,)Tyn. (26)

Y = [Yi,..., Yn], =[1,...,1] (27)¢ = [0 1 , ... ,)€On1 , = [a , . a ] (28)
4 3 2 1 By eliminating weight vector w and the error variable 0, the

linear system is reduced to:
Fig. 1. Fourc lass DDAG for one-vs-one multiclass LS-SVM based DOA
estimation. 0 -- I (29)
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In the linear systems defined in (25)- (29) the support values the learning algorithms generate DOA estimates,
ai are proportional to the errors at thed ata points. In the 0

r = [1, z ... ,9 L ,based on the responses from
standard SVM case many of these support values are zero, the antenna elements, a (O0).
but most of the least squares support values are non-zero. In For thep roposed machinel earning technique there is a
[13] a conjugate gradient method isp roposed for finding b trade-off between the accuracy of the DOA estimation and
and a, which are required for the SVM classifier in equation antennaa rray beamwidth. An increase in DOA estimation
(17). accuracy translates into a smaller beamwidth and a reduction

in MAI. Therefore the accuracy in DOA estimation directly
IV. ALGORITHMS FOR DOA ESTIMATION influences the minimum required power transmitted by the

Two primary, classic methods for subspace based DOA mobile. There should be a balance between computing effort
estimation exist in literature, Multiple Signal Classification and reduction in MAI.
(MUSIC) [15] and Estimation ofS ignal Parameters Via Ro-
tational Invariance Techniques (ESPRIT) [16]. The MUSIC V. LS-SVM DDAG BASED DOA ESTIMATION

algorithm is based on the noise subspace and ESPRIT is ALGORITHM

based on the signal subspace. In this paper we propose a multiclass SVM algorithm
Many computational techniques exist for working through trained with projection vectors generated from the signal

limitationso f DOA estimation techniques, but currently no subspace eigenvectors and the sample covariance matrix.T he
techniques exist for as ystem level approach to accurately output labels from the SVM system are the DOA estimates.
estimating the DOAs at the base station. A number of lim- The one-vs-one multiclass LS-SVM DDAG technique for
itations relating to popular DOA estimation techniques are: DOA estimation is trained for C DOA classes. The DDAG
1) the signals ubspace dimension is not known, many papers tree is initialized with C(C-1) nodes. Therefore C(C1)
assume that it is.T he differences between the covariance ma- 2 2

trix and the sample covariance matrix add to the uncertainty, one-vs-one LS-SVMs are trained to generated the hyper-tri an th saplecovriacematix dd o te ucerainyplanes with maximum margin. For each class thet raining

2) searching all possible angles to determine the maximum vectos wit areg en rated From thee raining

response of the MUSIC algorithm, 3) evaluating the Root- thesignal ae. en umbero f class spennt
MUSI poynoialon te uit irce, 4 mutipe egen the signal subspace. The number of classes is dependent

MUSICmpolytionomil fon ES ITh u cmputirale, 4 muplexeign f upon on the antenna sectoring and required resolution. For a
decompositions for ESPRIT, 5) computational complexity forCDAste thdsrdInrfeceupesinitas

maxium ikelhoo mehod.Thecapailiies in erm ofCDMA system the desired interference suppression dictates
maximum likelihood method. The capabilities, in terms of the fixed beamwidth. CDMA offers this flexibility since
resolution and computational requirements, of these standard the all mobiles use the same carrier frequency. For FDMA
DOA estimation algorithms serve as the benchmark for the systems a narrow beamwidth is desired, since frequency
machinel earning based DOA estimation. Refer to Section reuse determines the capacity of a cellular system.
VII for a comparison between standard DOA estimation resdtrmnshecpiyofaelursse.
Vlforithms and comparonbetween stiandard DOA esimtin Thes ignal subspace eigenvectors of the received signal
algorithms and the one-vs-one multiclass LS-SVM DOA covariance matrix are required for accurate DOA estimation.
estimation algorithm. For a CDMA system with adaptive antenna arrays the

covariance matrix of the received signal is
A. Machine Learning for DOA Estimation

To estimate the antenna array response, zj A

I= a (01) q3, we must know a (01) and qi. The contin- In our machine learning based DOA estimation algorithm
uous pilot signal, includedi n cdma2000, can be used in the principal eigenvectors must be calculated. Eigen decom-
estimating qý. This must be done for each resolvable path, position (ED) is the standard computational approach for
i.e., qi = [ q/2, q•, ... , qL j. Estimating A (0) = calculating the eigenvalues and eigenvectors of a the co-
[a (01), a (02), ... , a (OL) ] requires information on variance matrix. ED is a computationally intense technique,
the DOA. faster algorithmss uch asP ASTd [17] have been developed

The process of DOA estimation is to monitor the outputs forr eal-time processing applications.
of D antenna elements and predict the angle of arrival of L For the LS-SVM based approach to DOA estimation
signals, L<D. The output matrix from the antenna elements the output of the receiver is used to calculate the sample
is covariance matrix f?,. of the input data signal rA (k),

A = [a(01) a(02) ... a(OL) ] (30) Ki 1 K rA(k)rH(k) (32)

a(01) = [ 1 e-ik e-j 2 kL ... e-j(D-1)kI T R kr kr ). 3• • " •k=K- M+1

and the vector of incident signals is 0r = The dimension of the observation matrix is D x M, M is
0 01, 2, .... ,OL ]. With a training process, ideal sample size (window length), and the dimension of the
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TABLE I the C sample covariance matrices.
PROJECTION COEFFICIENTS FOR MACHINE LEARNING BASED POWER 4) Calculate the D x 1 projection vectors, U-S, for

CONTROL each of the C classes. The ensemble of projection

I Projection Coefficients vectors consists of A samples.
20 J 3 0  J 4"M25+ 1 30 T 1 40' 5) Store the projection vectors for the training phase

1 0.17+i.0.86 -0.20-i.0.54 0.00+i.0.86 and the eigenvectors for the testing phase.2 0.66+i.0.05 -0.82+i.0. 14 0.73-i.0.55
3 0.04-i.0.73 0.28+i.0.96 -11-i.5 • LS-SVM Training
4..... T -1 1.-.7 0.06+i.1.05 1) With the C projection vectors train the C(C-i)
5 0 20.60+i.0.92 -0.5-i.1.0 072i.2
6 0.0i07 -70 0 i. nodes with the one-vs-one LS-SVM algorithm.
7 0.72-i0 0.63+i.0.62 -0.03+i.0.76 2) Store the LS-SVM variables, a, and b from equa-
8 -0.52-i.0.78 0.51-i.0.44 0.45-i.0.42 tion (17), which define the hyperplane separation

fore ach DDAG node.

• Preprocessing for SVM Testing
sample covariance matrix is D x D. The principal eigen- 1) Acquire D x N input signal from antenna array,
vectors, v1 ,..., VD, are calculated via eigen decomposition this signal has unknown DOAs.
(ED) or subspacet racking techniques.Each eigenvector is 2) Generate the sample covariance matrix with M
used to calculate a covariance matrix, ,..., Rvr. samples from the D x N data vector.

The algorithm requires only the set of estimated eigenvec- 3) Calculate the eigenvectors for the signal subspace
torsf rom the sample covariance matrix, which are used to and the noise subspace.
generate projection coefficients for the classification process. 4) Generate the covariance matricesf or each eigen-
The-projection vectors are generated from the projection vector.
of Rv,,, 1 < d < D, onto the primary eigenvector of
the signal subspace. In the training phaset he hyperplanes • LS-SVM Testing for the i/j DDAG Node
at each DDAG node are constructed with thesep rojection 1) Calculate TWO D x 1 projection vectors with the

vectors. In the testing phase Rvvd is generated from the desired eigenvector covariance matrix and the ith

received signal rA (k) and the principal eigenvectors. Then and jth eigenvectors from the training phase.
the projection coefficients for the ith/jth node of the DDAG 2) Test both projection vectorsa gainst the LS-SVM

are computed with dot products of Rvvd and the ith/jth hyperplane for the i/j node. This requires two

training eigenvectors. Thisn ew set of projection vectorsi s separate LS-SVM testing cycles, one with the

testing with the ith/Jth hyperplane generated during the projection vector from the ith eigenvector and one

training phase. The DOA labels are then assigned based on with the projection vector from the jth eigenvec-

the DDAG evaluation path. A similar projection coefficient tor.

technique has been successfully applied to a multiclass SVM 3) Calculate the mean value of the two LS-SVM

facialr ecognition problem presented in [18].T able I includes output vectors (labels). Select the mean value that

threes ets of projection vectors, each set corresponds to a is closest to a decision boundary, 0 or 1. Compare

different DOA. From a review of the data it is evident that the this value to the label definition at the node, then

classes are not linearly separable. The data must be projected select the proper label.

to a higher dimension feature space and tested against the 4) Repeat process for the next DDAG node in the

separating hyperplane. evaluation path or declare the final DOA label.

The following algorithm for the one-vs-one multiclass LS- * Error Control
SVM implementation for DOA estimation includesp repro- 1) Review the MSE calculations for the DDAG eval-
cessing, training, and testing steps.S pecifically, the algorithm uation path.
requires two sets of projection vectors for each DDAG node. 2) Apply error control and validation measures to
This allows for automatic MSE calculations at each step of classify the label as either an accurate DOA es-
the DDAG evaluation path, thus providing a unique method timate or as NOISE.
fore rror control and validation.

Preprocessing for SVM Training VI. SIMULATION RESULTS

1) Generate the D x N training signal vectors for the Two simulation plots are included below. Each simulation
C LS-SVM classes, D is the number of antenna consists of af our class LS-SVM DDAG system. Figure 2
elements, N is the number of samples. shows results for a ten degree range per class. Figure 3 shows

2) Generate the C sample covariance matrices, results for a one degree range per class.
U,with M samples from the D x N data vector. The antenna array includes eight elements, therefore the

3) Calculate the signal eigenvector, S, from each of training and test signals were 8 x 1 vectors. The training
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and test signals are the complex outputs from the antenna
array. The received complex signal ism odeled with a zero
mean normal distribution with unit variance; the additive
noise includes a zero mean distribution with a 0.2 variance. ML DOA Estimates

This combination of signal and noise power translates into a
7dB SIR. ...

The system training consists of six DDAG nodes for the
four DOA classes. Both the training and test signals consisted
of 1500 samples and the window length of the sample 6 a 6 a , ,I
covariance matrix was set to five. Therefore the training DOA Test Signals

and test sets were composed of 300 samples of each 8 x 1
projection vector.

To completely test the LS-SVM DDAG system's capa- I - - - - - -

bilities the simulation were automated to test a wide range 10 15 20 25 30DOAs

of DOAs. The DOA test set consisting of signals ranging
from three degrees before the first DOA class to three
degrees after the last DOA class. Thus there were forty- Fig. 3. LS-SVM for DOA estimation, four classes with one degree
six test signals for Figure 2 and fourteen test signals for
Figure 3. As can been seen from the two plots the LS-SVM
DDAG DOA estimation algorithm is extremely accurate. No
misclassifications were logged. Testing shows that the LS- represent the deterministic values of the two LS-SVM labels

SVM DDAG system accurately classifies the DOAs fora ny at each DDAG level, thed eterministic values are referred

desired number of classes and DOA separations from one to as" theoretical decision statistics". Designing T-DGs for

degree to twenty degrees. DDAGs with threet o five classes and DOA ranges up to
five degrees between classes is straight forward. The T-DGs
are not deterministic for large DOA ranges, i.e. for a DOA
range of ten degrees between classes empirical results show
that the DDAG evaluation path isu npredictable. The large
DOA ranges lead to uncertainty in the evaluation path, even

ML oOA Estimates though the test DOA is classified correctly.
Empirical decision grids (E-DG) are automatically gener-

Si.. 'na. s ated in the LS-SVM DDAG DOA estimation algorithm. The
E-DGs tabulate the mean of the LS-SVM output label vectors
at each DDAG node and level, the mean values are referred to

DOA Test Signals as "decision statistics". The unique design of this algorithm
includes testing the input data against two hyperplanes at
the ith/Jth node. With this approach the two output vectors
at each node are compared to one another. In a noise-free

10 rn-Is 20 25 30 35 40 45 so 5s 60 environmentw ith perfect classification, the two label vectors
DOAs would be binary opposites, i.e. one label vector would be all

0's and the other label vector would be all l's. This technique
Fig. 2. LS-SVM for DOA estimation, four classes with ten degree enables computation of theoretical mean square errors and
separation between each. empirical mean square errors, refer to Section VI-B.

Table II includes a standard T-DG and Tables III and IV

include E-DGsf or a three classD DAG with a two degree
A. Decision Grids DOA range per class. The two levels of a three class DDAG

The decision grid (DG) technique was developed to track are equivalent to the first two levels of a four class DDAG,
the DDAG evaluation path and generate statistics to char- refer to Figure 1. Table II includes the possible evaluation
acterize the confidence level of the DOA classifications, paths of thist hree class DDAG. The nodesf or each DOA
The theoretical DG (T-DG) is a technique we developed to evaluation path are included for the first and second DDAG
quantify errors and add insighti nto the robustness of the LS- level. For example, DOA 1 has an evaluation path of Node
SVM DDAG architecture. The T-DG is a deterministic 2D 1 vs 3 at Level 1 and Node 1 vs 2 at Level 2. In Table III
grid for DDAGs with a relatively small number of classes and E-DG presents the decision statistics for a signal subspace
small DOA range between classes.T he elements of the T-DG eigenvector, in Table IV the second E-DG presents the
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TABLE 11 empirical decision statistics in relation to the" theoretical"
THEORETIC DECISION GRID FOR A DDAG SYSTEM WITH 3 CLASSES decision statistics. For example, the T-MSE for a 3 class

AND A 2 DEGREE DOA RANGE. DDAG is calculated with the T-DG and E-DG presented in

Tables Ila nd III. The T-MSE for Class 2 is calculated as
DOAs

Classl Class 2 Class 3 Level 1 Level 2
T-DG, Level 1 1 2 3 4 5 Label 0 Label I Label 0 Label I

Node Ivs3 lvs3 lvs3 lvs3 Ivs3 (0.5 - 0.032)2 (0.5 - 0.576)2 (1 - 1)2 (0-- 0)2
Label 0 0 0 0.5 1 1
Label I 1 1 0.5 0 0 Unlike the T-MSE, the E-MSE is at echnique that allows

T-DG, Level 2 - for real-time error tracking with only the empirical deci-

Node lvs2 Ivs2 l 0vs2 2vs3 2vs3 sion statistics. The E-MSE uses onlyt he E-DGs and the

Label 1 0.5 10.50.5 0 differences between the two LS-SVM decision statistics at
each node in the evaluation path. Thisi sa measure of the

TABLE III empirical classification accuracy achieved at each DDAG
EMPIRICAL DECISION GRID FOR A SIGNAL EIGENVECTOR node. The E-MSE for a3 class DDAG is calculated with

only the E-DG presented in Table III. The MSE for Class 2,
DOAs Level 1 is (10.032 - 0.5761 - 1)2 = 0.208 and the MSE for

___________ 
(11 ____ 

__1_ 
__ _ 1)2 = 0.Signal Data Class 1 _ J Class 2 [ _ Class 3 Class 2, Level 2 is (11-01-1) =0.

E-DG, Level 1 1 2 3 4 5
Node Ivs3 lvs3 Ivs3 Ivs3 Ivs3 C. Misclassifications vs. Gross Errors

Label 0 0 0 0.032 0.952 1
Label I 1 1 0.576 0 0 Two secondary performance measures for the LS-SVM

E-DG, Level 2 DDAG are misclassifications and grosse rrors. These mea-
Node Ivs2 lvs2 Ivs2\2vs3 2vs3 2vs3 sures are used for performance characterization of the multi-

Label 0 0 -0.176 1 0.808 1___Label I 0 0.16 0 0.4 0 class LS-SVM DDAG DOA estimation algorithm and for
tracking variations in performance for various algorithm

TABLE IV parameters. Misclassifications and gross errors can not be
EMPIRICAL DECISION GRID FOR A NOISE EIGENVECTOR used in real time implementation because knowledge of the

test DOAs is required.
Misclassifications measure "small shifts" in DOA clas-

fiDOAs
Noise Data JJ Class 1 Class 2 Class 3 sifications. If a DOA is located near a border between

E-DG, Level 1 1 2 3 4 5 labelst he machine learning processc ould classify the data
Node Ivs3 lvs3 Ivs3 Ivs3 lvs3 to an adjacent label, not the closest label. Therefore, a

Label 0 0.328 0.376 0.304 0.352 0.384 misclassification is a shift related error where a signal is
Label 1 0.752 0.744 0.712 0.768 0.776

E-DG, Level 2 detected, but classified to a spatially adjacent label. This type
Node Ivs2 lvs2 lvs2\2vs3 2vs3 2vs3 of error still gives an indication of the received DOA. The

Label 0 0.232 0.256 0.144 0.136 0.184 region of misclassifications is defined as ' of the DOA range
Label 1 0.896 0.904 0.952 0.944 0.944 applied to both sides of a DOA class.

Gross errors measure significant errors in DOA classifica-
tions.I fa DOA is classified into a specific class,b ut spatially

decision statistics for a noise subspace eigenvector, located at least one entire class away, then the error is due
to a breakdown in the machine learning process. This type

B. Theoretical and Empirical MSEs of error assigns false/misleading information to a received

The difficulty in tracking the performance of the LS-SVM DOA. The region of gross errors is defined as the magnitude
DDAG DOA estimation algorithm is duet o the numerous of the DOA range applied to both sides of the DOA class.
DDAG evaluation paths. For many DDAGs thee valuation Figure 4 displays the DOA regions for correct classi-
paths can be determined based on the input data and the fications, misclassifications and gross errors. This specific
class definitions. How can decision statistics be applied to example is for a DDAG class centered at 0' with a 50
performance characterization? DOA range, i.e., any DOA in the range [-2, 2] is correctly

The two primary performance measures for the LS-SVM classified to the 00 class. The region enclosed by the dashed
DDAG are the theoretical MSE (T-MSE) and the empirical brackets includes all DOAs that are correctly classified at
MSE (E-MSE). Both MSE performance measures are based the 00 class. If any DOAso utside the dashed bracketsb ut
on MSE calculations with T-DGs and E-DGs. The T-MSE inside the solid brackets are assigned the 0' class, then that
is a MSE calculation between the corresponding elements of DOA would be a misclassification. If any DOAs outside the
the T-DG and the E-DG. This is a measure of the algorithm's solid bracketsa re assigned to the 0' class, then that DOA
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would be a gross error. The misclassification region, for a
DOA classified at 0', is DOA E [-4, -3], [3,4]. The gross
error region, for a DOA classified at 00, is DOA q [-4, 4].

0. . 'r--U 0.4-

S0.3.

Id
I CI..."" " Sn

I C4.4

3 2.5 3

4 1.5 2

d
Correct G..l

.... ... .... o. Fig. 5. Theoretical MSE for a the polynomial kernel, the DOA range
.7 - .5 4 -3 .2 .1 0 1 2 3 4 6 s 7 a is 5' and spans the DDAG classesat 300 351, 40', 45', theLS-SVM

parameter, -y, is set at 2.

Fig. 4. Diagram of regions definingD OA misclassifications and gross the RBF kernel matches the performance of the polynomial
errors.

kernel for DOAs in the range of 15' to 600. The performance
of the polynomial kernel exceeds that of the RBF kernel for

D. Kernel Parameters DOAs < 150 and > 600.
Simulation results show that kernel selection has the 3) Multilayer Perceptron Kernel: Results show that the

greatest effect, out of all tunable variables, in thec lassifi- MLP kernel is ineffective in maintaining a low MSE for the

cation process. The four kernels discussed in Section III- range of parameters tested. The rate of misclassifications is

A are tested with the LS-SVM DDAG DOA estimation 42.5% and the rate of gross errors is 17.2%. Overall the

algorithm. The performances of each kernel function and performance of the MLP kernel is inferior to the polynomial

the associated parameters are characterized with in terms of and RBF kernels.

MSE, misclassifications, and gross errors. In addition, the 4) Linear Kernel. The linear kernel ise quivalent to the

LS-SVM regularization parameter, y, is varied to show the polynomial kernel with d = 1. Large MSE values show

influence of the LS-SVM complexity. that the linear kernel is not effective in the LS-SVM DOA

1) Polynomial Kernel: The polynomial kernel provides estimation algorithm. The average T-MSE is 27.8% and the

the best results, in relation to the RBF, MLP, and linear average E-MSE is 61.1%.
kernels. Figure 5 displays the T-MSE in terms of the poly-
nomial degree, d, and constant, 0. The simulation is based E. Training and Test Vectors
on af our class DDAG with a 50 DOA rangea nd a fixed The design of training sequences is an important factor in
LS-SVM variable, -y = 2. The results show that the degree machine learning applications. For adaptive antennaa rrays
of the polynomial kernel affects the DOA estimation; the the training sequences represent the array outputs for the
best values are d = 2 and d = 4. For d = 1 the polynomial C DOA classes. Three specific elements of the training
kerneli s equivalent to the linear kernel. The MSE is constant sequences are noise variance, training vector length, and
for 1 < -y < 6, and the polynomial constant, 0, does not length of thes amplec ovariance window. The requirement
influence the performance. The rate of misclassifications is is to design training sequences that minimize both the
1.2% with zero gross errors. The degree of the polynomial is training error and generalization error. Empirical analysis
the only factor affecting the computational time for system of the multiclass LS-SVM based DOA estimation algorithm
training, shows that training error is effectively zero; the hyperplane

2) Radial Basis Function Kernel: The performance of separation of the data in the feature space is welld efined and
the RBF kernel is characterized in terms of the LS- separable. In this papert he generalization error is expressed
SVM regularization variable, -y, and the smoothing parame- in terms of MSEs, misclassifications and gross errors.
ter, or. The simulation is based on a four class DDAG with a The primary method for training LS-SVM DDAG systems
50 DOA range.T he results show that the MSE is constant for for DOA estimation is based on synthetic training vectors
^I > 1.5, and or2 > 0.5. The rate of misclassifications is 0.4% generated with known noise power and preselected vector
with zero gross errors. The training time increases with the lengths. In practice, the training vectors would be stored in
value of -y and for small values of cr 2 . The performance of the memory of the receiver that employs the DOA estimation
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algorithm. This approach allows for offline training of the ....... .
binary LS-SVM algorithms. 0.25 "

Simulation results show that the LS-SVM DOA estimation
0.2-algorithm is robust, in terms of MSE, when analyzed for a

range ofS IRs in the training vectors and the test signals. In .1 ... ...

general, the noise power of the training vectors doesn't have a 0.1.
dramatic effect on the generalization error. Simulations were ..
conducted with training vectors that included SIRs in the
range of 20 dB to 7 dB. Review of them isclassification ...

..... ••7s°..and gross error statistics show that training vectors with noise 2413.0
variances of 0.04 and 0.12, which correspond to SIRs of 13 7 0 .5

dB and 10 dB, provide the best performance. Test Window Mutiplier 2 Vector Lwot,

1) Length of Training and Testing Vectors: Figure 6
includes two plots of average theoretical MSE versus training Fig. 7. Theoretical MSE as a function of training vector length and input
vector length. The data is specific to a four class LS-SVM vector length. The LSSVM DDAG system includes four class and a four
DDAG system with a four degree polynomial kernel. The two degree polynomial kernel. The test window multiplier defines the input
plots show that the window length of the sample covariance vector length, i.e. the input vector length ranges between 0.5 to 2 times

the training vectorl ength.
matrix does not impact the performance.L ikewise there is no

correlation between the length of the training vector and the TABLE V

MSE. The results in Figure 6 are based on test vectors with PROCESSING TIMES, IN SECONDS, FOR ONE-VS-ONE MULTICLASS

size equivalent to the training vectors. Figure 7 is a 3D plot LS-SVM FOR DOA ESTIMATION.

of the theoretical MSE as a function of vector dimensions;
the dimensions of the training vectors and input data vectors. Vector Size
The length of the input data vector ranges from 0.5 to 2 times 25 50 75 100 125 150 175 200
the length of the training vectors. The data shows that range Train 0.30 0.94 2.25 4.49 1 7.39 11.27 15.23 20.38
of input data vectors has no effect on the MSE statistics. Test 0.20 0.23 0.31 0.47 0.56 0.66 0.72 0.91

0.2

0.18 1-#- Window Length= 1 as a basic indicator for possible hardware implementation
and real-time applications.0.18 The data in this section shows that the design of the

S0.14 training vectors is important, but there is a tolerance in the
.0.12 selection of noise power and training vector length. The
S0.1 AA, available tolerance in choosing parameters of the training
0008 vectors validates the design of the LS-SVM DOA estimation

Io!e algorithm. This characteristic allows flexibility in the system
design and provides a high confidence level in the DOA

0.04 estimates. In addition,w hen considering real-time implemen-
0.02 tation of the algorithm, the dimensions of the training vector

25 37 49 61 73 85 97 109 121 1331 45 157 169 181 193 must be carefully reviewed. Shorter training vectors offer
Tralning Vector Length high performance, in terms of MSE, and fast training times.

Fig. 6. Average theoretical MSE as a function of training vector length. F Range of DDAG Parameters for DOA Estimation
Two data plots are included; one plot is for a sample covariance matrix with
a five sample window, one plot is for a sample covariance matrix with a ten The exceptional performance of the LS-SVM DDAG DOA
sample window, estimation algorithm has been proved in thep revious sec-

tions. Most thep revious simulation results wereb ased on
Table V shows the processing times, in seconds, required three and four class DDAGs. To cover the desired span of

for training a four class LS-SVM DDAG system with a the antenna array sector the algorithm must be flexible in the
four degreep olynomial kernel. and testing the input data. numbero f DDAG classes and DOA ranges. Different appli-
The results Data is included for training and test vectors cations require different DDAG architectures. Many times
that range from 25 samples to 200 samples. The simulations the application will require fast training and high accuracy.
were conducted with a Pentium 4 running at 2.5 GHz. The Training a LS-SVM DDAG system can be performed offline.
processing times are relative to the computer system and the But covering a large antenna sector with high resolution
level of optimization applied to the programming, but serve would require either:
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TABLE VI DDAG cycle for each eigenvector the multiclass algorithm
PERCENTAGE OF MISCLASSIFICATIONS VERSUS DDAG CLASSES (3-6) has the capability of assigning multiple labeist o the input

AND DOA RANGES (1-10). signal.

DOA Range between Classes, Degrees VII. COMPARISON TO STANDARD DOA ESTIMATION
Classesl1 1 2 3 4 5 6 7 8 9 10 ALGORITHMS

3 0 0 0 0 6.7 0 4.8 4.2 0 0
4 0 0 0 0 0 0 3.6 3.1 0 0 Thep erformanceo f the one-vs-one multiclass LS-SVM
5 0 0 0 0 4.0 0 2.9 0 6.7 0 algorithm for DOE estimation is described, in detail, in
6 0 0 0 0 0 0 .8 0 5.6 0 the previous section. The results show that the multiclass

classification approach to DOA estimation providesu nique
benefits,i n terms of computational complexity and flexibility.

1) A DDAG with a large number of classes and a small Each algorithm is trained for C DOA classes. The number
DOA range, of classes is dependent upon on the antenna sectoring and

2) A two stage system where the antenna sector is parti- required resolution. The ideal application of this technique
tioned into a set number of classes with a wide DOA is CDMA cellular systems. For a CDMA system the desired
range. First, the signal is detected in a specific partition, interference suppression dictates the fixed beamwidth. A
then a DDAG structure for high resolution can classify reduction in beamwidth corresponds to a reduction in MAI,
the DOA with high accuracy thus reducing the required transmit power at the mobile

Whatever the desired approach is, the LS-SVM DDAG algo- subscriber. CDMA offers this flexibility since the all mobiles
rithm must be flexible in design and robust in performance. use the same carrier frequency. For Frequency Division

The data in this section proves the performance for a wide Multiple Access (FDMA) systems a narrow beamwidth is
range of DDAG structures. Simulations were conducted for desired, since frequency reuse factors into the capacity of a
three to ten classes with DOA ranges between 10 and 200. cellular system, thus requiring accurate DOA estimates with
With these classes and DOA ranges the LS-SVM DDAG high resolution.
algorithms is able to span antenna sectors of 3' to 900.
Table VI lists the number of misclassifications. Seventy-five A. Computational Complexity
percent of the DDAG structures with DOA ranges between
10 and 100 have zero misclassifications; the average rate of Conventional subspace based DOA estimation algorithms,
misclassifications for the set of DDAG structures is 1.2%. such as MUSIC and ESPRIT, are computationally complex.
The largest percentage of misclassifications is 6.7% and The algorithms require accurate knowledge of the signal
occurs with a five class DDAG with a nine degree DOA subspace dimension and accurate estimates of the signal

range. and noise subspace eigenvectors. Additionally, the MUSIC
algorithm requires a precise characterization of the antenna

G. Multilabel Capability for Multiple DOAs array and the ESPRIT algorithm requires multiple eigen
decompositions.

In DOA estimation for cellular systems, there can be Theo ne-vs-onem ulticlass LS-SVM algorithm for DOA
multiple DOAs for a given signal. This results from multipath estimation is flexible, with respect to computationally re-
effects induced by the communication channel. The machine quirements. The training cycle for the LS-SVM based DDAG
learning system must be able to discriminate between a small iss traight forward and can be completed offline with sim-
number of independent DOAs that include signal components ulated data. The only information required is the size of
with similar time delays. With this constraint the machine the antenna array and the number of DDAG nodes, which
learning algorithm then mustb e a multiclass system and able corresponds to DOA classes.F or accurate DOA estimates the
to process multiple labels, only information required, for the LS-SVM DDAG testing

The machine leaming algorithm must generate multiclass cycle, is the dimension of thea ntenna array and accurate
labels, y, e C, where C e [-90, 90] is a set of real numbers eigenvector estimates of the sample covariance matrix. The
that represent an appropriate range of expected DOA values, dimension of the signal subspace is not required, nor is
and multiple labels yi, i = 1... L for L dominant signal accurate characterization of the antenna array.
paths. If antenna sectoring is used in the cellular system the
multiclass labels are from the set C f [Sil, where Si is field
of view for the jth sector B. Simulation Results

Multilabel classification is possible with the LS-SVM Figure 8 compares the one-vs-one multiclass LS-SVM
DDAG algorithm presented in Section V. The machine DOA estimation algorithm and the MUSIC algorithm. The
learning algorithm for DOA estimation assigns DOA labels top window shows perfect DOA estimation for the machine
to each eigenvector in the signal subspace. By repeating the learning method presented in this paper. The multiclass
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algorithm includes an eight class DDAG and a one de- 4

gree DOA range per class. Note that multiclass LS-SVM 2-

algorithm classifies signalso utside the DOA classest o the -- .P!.- 0- .
nearest class, as shown with theD OAs at 120 - 14' and "- -2 -- 0

9 0
230 - 25'. The bottom window displays the DOA estimation W -4 - 0 Errs-MUSIC

with the MUSIC algorithm,1 00 DOA estimates are averaged . 1 E _ _ _ _ ML

for each received signal and the amplitudes are normalized 0 10 20 30 40 s50 0 70 80 90

to the largest estimate. Thep lots show that ther esolution DOAs
capabilities one-vs-one multiclass LS-SVM DOA estimation 80-

algorithm equal that of the MUSIC algorithm.One drawback o
060.

of the MUSIC algorithm is the broad width of the DOA 0

estimate; a level detection step is required to accurately select 2W 40 -
E

the maximum response. M 20- 0 DGAs-MUSIC
Mo ý + DOA -ML

Figure 9 compares the errors and DOA estimates ofe ach +

algorithm. For this simulation the one-vs-one multiclass LS- 0 10 20 30 40 o50 60 70 80 90

SVM algorithm includes a seventeen class DDAG and a
five degree DOA range per class. The top window plots Fig. 9. Comparision of errors and estimated DOAs for the LS-SVM
the errorsi n the DOA estimates for ninety degree antenna based DOA estimation algorithm and the MUSIC algorithm. The one-vs-one
sector and one DOA sample per degree. The definitionso f multiclass LS-SVM DOA estimation algortihm includes seventeen classes
an error are specific to the two algorithms. For the machine and a five degree DOA range.

learning based algorithm, an error is defined as a DOA that is
classified into a wrong DOA class. For the MUSIC algorithm C Benefits over Standard Techniques
an error is the difference between the estimated DOA and
the actual DOA. As shown in the top window, the only Evaluation of the performance statistics, Section VI,

errors associated with theL S-SVM based algorithm occur proves that the one-vs-one multiclass LS-SVM algorithm for

for DOAs greater than 82'. The DOAs in error are classified DOA estimation is reliable with a high degree of accuracy. In

into the spatially adjacent DOA class at 80'. Likewise, the terms of performance our new algorithm provides the same

errors associated with the MUSIC algorithm, that are greater capabilities as the standard DOA estimation methods.S pecif-

than 1',o ccur for DOAs greater than 700. The plots in Figure ically, accurate DOA estimates, to a one degree resolution,
9 prove the robust performance of the one-vs-one multiclass can be achieved with the standard subspace based algorithms

LS-SVM algorithm for DOA estimation, and our machine learning based algorithm. The primary
benefits of our LS-SVM based DOA estimation algorithm are
the reduced computational complexity, described above, and

DOAs Calculated with LS-SVM the flexibility, in terms of DOA classes versus requirements.

The specific application dictatest he desired resolution and

?Q Q Q ? 5,ML DOA Estimates therefore the number of DOA classes. For example, one
application may include a sixty degree antenna sector and a

"U i"i 6 * * A I * lb O_ Test Signals desired resolution of ten degrees. These requirements would
translate into a seven class system. Another application may

- --- *L include a twenty degree sector and a desired resolution of two
5 10 15 20 2 30 degrees; this would translate into a eleven class system. An

DOAs calculated with MUSIC and ED

0.8 described in Section VI-F, that allows for a high resolution
.• 0..1 with a small number of classes. In general, the one-vs-one

DOA•1 multiclass LS-SVM algorithm for DOA estimation can be
•0.1 adapted to specific requirements, as influenced by system

0.2[ capacity, channel conditions, and available computational
5 20 25 30 resources. The MUSIC and ESPRIT algorithms offer no

DOAs flexibility, in terms of DOA resolution and computational
resources.

Fig. 8. Comparision between the LS-SVM based DOA estimation algorithm
and the MUSIC algorithm. The one-vs-one multiclass LS-SVM DOA VIII. CONCLUSION
estimation algortihm includes eight classes and a one degree DOA range. In this paper we presented a machine learning architecture

for DOA estimation as applied to a CDMA cellular system.
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The broad range of our research in machine learning based [9] D.J. Sebald and J.A. Bucklew, "Support Vector Machine Techniques

DOA estimation includesm ulticlass and multilabel classifi- for Nonlinear Equalization",l EEE Transactions On SignalP rocessing,
vol. 48, no. 11, pp. 3217-3226, November 2000.

cation, classification accuracy, error control and validation, [10] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
kernel selection, estimation of signal subspace dimension, Machines, Cambridge University Press, New York, 2000.

and overall performance characterization. Wep resented an [11] J.A.K. Suykens, "Support Vector Machines: A Nonlinear Modelling
and ControlP erspective",E uropean Joumalo f Control,v ol 7,p p.3 I I-overview of a multiclass SVM learning method ands uc- 327, 2001

cessful implementation of a one-vs-one multiclass LS-SVM [12] J.C. Platt, N.Christianini, and J. Shawe-Taylor, "Large Margin DAGs
DDAG system forD OA estimation. for Multiclass Classification", in Advances in Neural Information

Processing Systems,v ol. I 2,p p.5 47-553,C ambridge,M A, MIT Press,
The LS-SVM DOA estimation algorithm is superior to 2000.

standard techniquesd ue to the robust design that is insen- [13] J.A.K. Suykens, L. Lukas, P. Van Dooren, B. DeMoor, and J. Van-
sitive to received SIR, Doppler shift, size of the antenna dewalle, "Least Squares Support Vector Machine Classifiers: a Large

Scale Algorithm", ECCTD'99 European Conf. on Circuit Theory andarray, and the computational requirementsa re adaptable to Design, pp. 839-842, August 1999.
the desired applications. The algorithm was designed with [14] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J.

a multiclass, multilabel capability and includes an error Vandewalle, Least Squares Support Vector Machines World Scientific,
New Jersey, 2002.

control and validation process. In addition, there are many [15] R.O. Schmidt, "Multiple Emitter Location and Signal Parameter Esti-
limitations of standard DOA estimation algorithms, ESPRIT mation", IEEE Transactions on Antennas and Propagation, AP-34, pp.

and MUSIC, that do not exist with the LS-SVM DOA 276-280, March 1986.
algorithm. [16] R.H. Roy, and T. Kailath, "ESPRIT-Estimation of Signal Parameters

estimation aVia Rotational Invariance Techniques", IEEE Transactions On Acous-
The LS-SVM algorithm for DOA estimation assigns DOA tics, Speech, and Signal Processing, vol. 37, no. 7, pp. 984-995, July

labels to each eigenvector in the signal subspace. By re- 1989.
[17] B.Y ang, "Projection Approximation Subspace Tracking", IEEE Trans-

peating the DDAG cycle for each eigenvector the multiclass actions on Signal Processing,v ol.4 3,n o. 1, pp. 9 5-107,J anuary 1995.

algorithm hast he capability of assigning multiple labelst 0 [18] G. Guo, S.Z. Li, and K.L. Chan, "Support Vector Machines for Face
the input signal. Simulation results show a high degree of Recognition", Image and Vision Computing, vol 19, pp. 631-638,

accuracy and prove that the LS-SVM DDAG system has a 2001.
wide range of performance capabilities. The results show

that the algorithm is accurate for a large range of DDAG
performance independent of DDAG class or DOA range per
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